Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(10): 4451-4460, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38363099

RESUMO

In this work, we report an innovative method for synthesizing BiOI nanoplate powder by a slow basification of an aqueous solution constituted of Bi(NO3)3 and KI. The basification was done with NH3 vapor which was naturally generated on top of an NH4OH solution kept in a closed space. The impact of the basification rate on the morphology and crystallinity of the BiOI product was investigated. Herein, we also report on the use of newly produced BiOI nanoplate powder together with the VO(acac)2 precursor for fabricating BiVO4 photoanodes for solar driven water splitting applications. We also discuss how the morphology of BiOI nanoplates and their orientation on a fluorine doped tin oxide substrate will affect the morphology, topology and photocatalytic performance of the electrode. The BiVO4 photoanode showed a photocatalytic current density of 0.55 mA cm-2 at 1.23 V vs. the Reversible Hydrogen Electrode (RHE) when assayed in a pH 7 phosphate buffer electrolyte and under 1 sun illumination.

2.
iScience ; 27(1): 108477, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205261

RESUMO

Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.

3.
Chem Biodivers ; 20(9): e202300903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505806

RESUMO

Many plants have been known to be contaminated and accumulate plasticizers from the environment, including water sources, soil, and atmosphere. Plasticizers are used to confer elasticity and flexibility to various fiber and plastic products. Consumption of plasticizers can lead to many adverse effects on human health, including reproductive and developmental toxicity, endocrine disruption, and cancer. Herein, we report for the first time that two plasticizers, bis(2-ethylhexyl) terephthalate (DEHT) and bis(2-ethylhexyl) phthalate (DEHP), have been isolated from the leaves of Capparis spinosa L. (the caper bush), a plant that is widely used in food seasonings and traditional medicine. 297 mg/kg of DEHT and 48 mg/kg of DEHP were isolated from dried and grounded C. spinosa L. leaves using column chromatography and semi-preparative high-performance liquid chromatography. Our study adds to the increase in the detection of plasticizers in our food and medicinal plants and to the alarming concern about their potential adverse effects on human health.


Assuntos
Capparis , Dietilexilftalato , Humanos , Plastificantes/toxicidade , Plastificantes/análise , Dietilexilftalato/toxicidade , Dietilexilftalato/análise , Plantas , Folhas de Planta/química
4.
ACS Chem Neurosci ; 14(5): 958-976, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795782

RESUMO

The kappa opioid receptor (KOR) is involved in the regulation of both the reward and mood processes. Recent reports find that the use of drugs of abuse increases the production of dynorphin and the overall activation of KOR. Long-acting KOR antagonists, such as norbinaltorphimine (nor-BNI), JDTic, and 5'-guanidinonaltrindole (GNTI), have been shown to stop depressive and anxiety-related disorders, which are the common side effects of withdrawal that can lead to a relapse in drug use. Unfortunately, these prototypical KOR antagonists are known to induce selective KOR antagonism that is delayed by hours and extremely prolonged, and their use in humans comes with serious safety concerns because they possess a large window for potential drug-drug interactions. Furthermore, their persistent pharmacodynamic activities can hinder the ability to reverse unanticipated side effects immediately. Herein, we report our studies of the lead selective, salvinorin-based KOR antagonist (1) as well as nor-BNI on C57BL/6N male mice for spontaneous cocaine withdrawal. Assessment of pharmacokinetics showed that 1 is a short-acting compound with an average half-life of 3.75 h across different compartments (brain, spinal cord, liver, and plasma). Both 1 (5 mg/kg) and nor-BNI (5 mg/kg) were shown to reduce spontaneous withdrawal behavior in mice, with 1 producing additional anti-anxiety-like behavior in a light-dark transition test (however, no mood-related effects of 1 or nor-BNI were observed at the current dosing in an elevated plus maze or a tail suspension test). Our results support the study of selective, short-acting KOR antagonists for the treatment of psychostimulant withdrawal and the associated negative mood states that contribute to relapse. Furthermore, we identified pertinent interactions between 1 and KOR via computational studies, including induced-fit docking, mutagenesis, and molecular dynamics simulations, to gain insight into the design of future selective, potent, and short-acting salvinorin-based KOR antagonists.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Masculino , Animais , Receptores Opioides kappa , Cocaína/farmacologia , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Recidiva
5.
Bioorg Med Chem ; 78: 117137, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603398

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors. Recent efforts to develop amino acid analogues to inhibit glutamine metabolism in cancer have been extensive. Our lab recently discovered many L-γ-methyleneglutamic acid amides that were shown to be as efficacious as tamoxifen or olaparib in inhibiting the cell growth of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells after 24 or 72 h of treatment. None of these compounds inhibited the cell growth of nonmalignant MCF-10A breast cells. These L-γ-methyleneglutamic acid amides hold promise as novel therapeutics for the treatment of multiple subtypes of breast cancer. Herein, we report our synthesis and evaluation of two series of tert-butyl ester and ethyl ester prodrugs of these L-γ-methyleneglutamic acid amides and the cyclic metabolite and its tert-butyl esters and ethyl esters on the three breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 and the nonmalignant MCF-10A breast cell line. These esters were found to suppress the growth of the breast cancer cells, but they were less potent compared to the L-γ-methyleneglutamic acid amides. Pharmacokinetic (PK) studies were carried out on the lead L-γ-methyleneglutamic acid amide to establish tissue-specific distribution and other PK parameters. Notably, this lead compound showed moderate exposure to the brain with a half-life of 0.74 h and good tissue distribution, such as in the kidney and liver. Therefore, the L-γ-methyleneglutamic acid amides were then tested on glioblastoma cell lines BNC3 and BNC6 and head and neck cancer cell lines HN30 and HN31. They were found to effectively suppress the growth of these cancer cell lines after 24 or 72 h of treatment in a concentration-dependent manner. These results suggest broad applications of the L-γ-methyleneglutamic acid amides in anticancer therapy.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Amidas/química , Pró-Fármacos/farmacologia , Ésteres/farmacologia , Ésteres/química , Aminoácidos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
6.
Eur J Med Chem ; 243: 114785, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179400

RESUMO

Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and ß-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and ß-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.


Assuntos
Receptores Opioides kappa , Transtornos Relacionados ao Uso de Substâncias , Humanos , Depressão/tratamento farmacológico , Ligantes , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Ansiedade/tratamento farmacológico , Analgésicos Opioides/farmacologia
7.
Chem Biodivers ; 19(10): e202200300, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36064949

RESUMO

Capparis spinosa L., commonly known as the caper bush, is an aromatic plant growing in most of the Mediterranean basin and some parts of Western Asia. C. spinosa L. has been utilized as a medicinal plant for quite a long time in conventional phytomedicine. Polyphenols and numerous bioactive chemicals extracted from C. spinosa L. display various therapeutic properties that have made this plant a target for further research as a health promoter. This review is meant to systematically summarize the traditional uses, the phytochemical composition of C. spinosa L., and the diverse pharmacological activities, as well as the synthetic routes to derivatives of some identified chemical components for the improvement of biological activities and enhancement of pharmacokinetic profiles. This review also addresses the benefits of C. spinosa L. in adapting to climate change and the socio-economic value that C. spinosa L. brings to the rural economies of many countries.


Assuntos
Capparis , Plantas Medicinais , Capparis/química , Polifenóis/farmacologia , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fatores Socioeconômicos
9.
Beilstein J Org Chem ; 18: 446-458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529890

RESUMO

Herein we report a method for the synthesis of 3,4,5-trisubstituted isoxazoles in water under mild basic conditions at room temperature via a [3 + 2]-cycloaddition of nitrile oxides and 1,3-diketones, ß-ketoesters, or ß-ketoamides. We optimized the reaction conditions to control the selectivity of the production of isoxazoles and circumvent other competing reactions, such as O-imidoylation or hetero [3 + 2]-cycloaddition. The reaction happens fast in water and completes within 1-2 hours, which provides an environmentally friendly access to 3,4,5-trisubstituted isoxazoles, an important class of structures found in numerous bioactive natural products and pharmaceuticals. Additionally, we optimized the reaction conditions to produce trifluoromethyl-substituted isoxazoles, a prevalent scaffold in biomedical research and drug discovery programs. We also proposed a plausible mechanism for the selectivity of the [3 + 2]-cycloaddition reaction to produce 3,4,5-trisubstituted isoxazoles. Not to be overlooked are our optimized reaction conditions for the dimerization of hydroximoyl chlorides to form furoxans also known as 1,2,5-oxadiazole 2-oxides, a class of structures with important biological activities due to their unique electronic nature and coordination ability.

10.
ChemMedChem ; 17(7): e202100684, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043597

RESUMO

Current common analgesics are mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. However, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold via an ester linker. In vitro studies showed that many of these compounds have dual agonism on kappa and mu opioid receptors. In vivo studies on the lead dual kappa and mu opioid receptor agonist demonstrated supraspinal thermal analgesic activity while avoiding anxiogenic effects in male mice, thus providing further strong evidence in support of the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


Assuntos
Receptores Opioides kappa , Receptores Opioides mu , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/farmacologia , Animais , Diterpenos Clerodânicos , Ésteres , Masculino , Camundongos , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas
11.
J Neuroendocrinol ; 34(2): e13047, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34651359

RESUMO

Forty years into the HIV pandemic, approximately 50% of infected individuals still suffer from a constellation of neurological disorders collectively known as 'neuroHIV.' Although combination antiretroviral therapy (cART) has been a tremendous success, in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the central nervous system, serving as sources of HIV virotoxins that damage mitochondria and promote neurotoxicity. Although understudied, there is evidence that HIV or the HIV regulatory protein, trans-activator of transcription (Tat), can dysregulate neurosteroid formation potentially contributing to endocrine dysfunction. People living with HIV commonly suffer from endocrine disorders, including hypercortisolemia accompanied by paradoxical adrenal insufficiency upon stress. Age-related comorbidities often onset sooner and with greater magnitude among people living with HIV and are commonly accompanied by hypogonadism. In the post-cART era, these derangements of the hypothalamic-pituitary-adrenal and -gonadal axes are secondary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, the capacity for hormone therapeutics to play an ameliorative role and the future steroid-based therapeutics that may have efficacy as novel adjunctives to cART.


Assuntos
Infecções por HIV , HIV-1 , Sistema Nervoso Central/metabolismo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Sistemas Neurossecretores/metabolismo , Pregnanolona/metabolismo , Pregnanolona/uso terapêutico
12.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299400

RESUMO

The goal of this study was to assess the pharmacological effects of black tea (Camellia sinensis var. assamica) water extract on human kinin-forming enzymes in vitro. Tea is a highly consumed beverage in the world. Factor XII (FXII, Hageman factor)-independent- and -dependent activation of prekallikrein to kallikrein leads to the liberation of bradykinin (BK) from high-molecular-weight kininogen (HK). The excessive BK production causes vascular endothelial and nonvascular smooth muscle cell permeability, leading to angioedema. The prevalence of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema appears to be through BK. Both histamine and BK are potent inflammatory mediators. However, the treatments for histamine-mediated angioedema are unsuitable for BK-mediated angioedema. We hypothesized that long-term consumption of tea would reduce bradykinin-dependent processes within the systemic and pulmonary vasculature, independent of the anti-inflammatory actions of polyphenols. A purified fraction of the black tea water extract inhibited both kallikrein and activated FXII. The black tea water extracts inhibited factor XII-induced cell migration and inhibited the production of kallikrein on the endothelial cell line. We compared the inhibitory effects of the black tea water extract and twenty-three well-known anti-inflammatory medicinal herbs, in inhibiting both kallikrein and FXII. Surprisingly, arjunglucoside II specifically inhibited the activated factor XII (FXIIa), but not the kallikrein and the activated factor XI. Taken together, the black tea water extract exerts its anti-inflammatory effects, in part, by inhibiting kallikrein and activated FXII, which are part of the plasma kallikrein-kinin system (KKS), and by decreasing BK production. The inhibition of kallikrein and activated FXII represents a unique polyphenol-independent anti-inflammatory mechanism of action for the black tea.


Assuntos
Bradicinina/metabolismo , Camellia/química , Endotélio Vascular/efeitos dos fármacos , Fator XII/antagonistas & inibidores , Sistema Calicreína-Cinina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Artéria Pulmonar/metabolismo
13.
RSC Adv ; 11(13): 7115-7128, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33777357

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors, fueling the TCA cycle with glutamine-derived α-ketoglutarate. The enhanced production of α-ketoglutarate is critical to cancer cells as it provides carbons for the TCA cycle to produce glutathione, fatty acids, and nucleotides, and contributes nitrogens to produce hexosamines, nucleotides, and many nonessential amino acids. Efforts to inhibit glutamine metabolism in cancer using amino acid analogs have been extensive. l-γ-Methyleneglutamine was shown to be of considerable biochemical importance, playing a major role in nitrogen transport in Arachis and Amorpha plants. Herein we report for the first time an efficient synthetic route to l-γ-methyleneglutamine and its amide derivatives. Many of these l-γ-methyleneglutamic acid amides were shown to be as efficacious as tamoxifen or olaparib at arresting cell growth among MCF-7 (ER+/PR+/HER2-), and SK-BR-3 (ER-/PR-/HER2+) breast cancer cells at 24 or 72 h of treatment. Several of these compounds exerted similar efficacy to olaparib at arresting cell growth among triple-negative MDA-MB-231 breast cancer cells by 72 h of treatment. None of the compounds inhibited cell growth in benign MCF-10A breast cells. Overall, N-phenyl amides and N-benzyl amides, such as 3, 5, 9, and 10, arrested the growth of all three (MCF-7, SK-BR-3, and MDA-MB-231) cell lines for 72 h and were devoid of cytotoxicity on MCF-10A control cells; N-benzyl amides with an electron withdrawing group at the para position, such as 5 and 6, inhibited the growth of triple-negative MDA-MB-231 cells commensurate to olaparib. These compounds hold promise as novel therapeutics for the treatment of multiple breast cancer subtypes.

14.
Neurochem Int ; 137: 104748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339667

RESUMO

Hypoxia induces reversible κ-opioid receptor (KOR) internalization similar to the internalization that is induced by KOR agonists. In the current study, we demonstrate that this KOR internalization is a protective mechanism via the ß-arrestin specific pathway in an oxygen-glucose deprivation (OGD) model. Mouse neuroblastoma Neuro2A cells were stably transfected with mouse KOR-tdTomato fusion protein (N2A-mKOR-tdT cells). Various concentrations of salvinorin A (SA), a highly selective KOR agonist, were given in the presence and absence of norbinaltorphimine (norBNI), which is a KOR antagonist, or Dyngo-4a (internalization inhibitor) or API-2 (Akt/Protein kinase B signaling inhibitor-2). Various concentrations of SA and RB-64 (22-thiocyanatosalvinorin A, selective for the G protein signaling pathway) were administered both in normoxic and hypoxic conditions. Autophagosomes and ultrastructural components of cells were observed using transmission electron microscopy (TEM). Cell viability, severity of cell injury, and levels of proteins related to the Akt signaling pathway were evaluated using live cell counting (by Cell Counting Kit-8), the lactic acid dehydrogenase (LDH) release rate, and Western blot analysis, respectively. SA promoted cell survival and attenuated OGD-induced cell injury. The Akt signaling pathway is activated by SA. KOR internalization, when blocked by norBNI or Dyngo-4a, increased LDH release and decreased cell viability under OGD. Treatment with SA significantly inhibited autophagy, and the effects of SA on autophagy were reversed by API-2 pretreatment. RB-64 in a low concentration without ß-arrestin recruitment did not reduce LDH release and increase cell viability as observed with SA. KOR internalization through ß-arrestin activation is a protective mechanism against OGD. The Akt pathway might play a critical role in modulating these protective effects by inhibiting autophagy.


Assuntos
Glucose/metabolismo , Oxigênio/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , beta-Arrestinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/farmacologia , Camundongos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas/farmacologia
15.
Curr Top Med Chem ; 18(6): 494-504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29788892

RESUMO

Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the "Warburg effect", has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
16.
Chem Commun (Camb) ; 54(27): 3363-3366, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29542767

RESUMO

An electrode made of Au nanoparticles, ca. 13 nm in diameter, displays outstanding catalytic activity for the hydrogen evolution reaction in water. At an overpotential of 200 mV it operates with a catalytic rate TOF of 0.3 s-1, which is among the best performances ever achieved for a Pt-free H2-evolving catalyst.

17.
J Am Chem Soc ; 140(6): 2151-2164, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29381352

RESUMO

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. Inhibition of GABA aminotransferase (GABA-AT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, has been established as a possible strategy for the treatment of substance abuse. The raised GABA levels that occur as a consequence of this inhibition have been found to antagonize the rapid release of dopamine in the ventral striatum (nucleus accumbens) that follows an acute challenge by an addictive substance. In addition, increased GABA levels are also known to elicit an anticonvulsant effect in patients with epilepsy. We previously designed the mechanism-based inactivator (1S,3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (2), now called CPP-115, that is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved drug that is an inactivator of GABA-AT. CPP-115 was found to have high therapeutic potential for the treatment of cocaine addiction and for a variety of epilepsies, has successfully completed a Phase I safety clinical trial, and was found to be effective in the treatment of infantile spasms (West syndrome). Herein we report the design, using molecular dynamics simulations, synthesis, and biological evaluation of a new mechanism-based inactivator, (S)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid (5), which was found to be almost 10 times more efficient as an inactivator of GABA-AT than CPP-115. We also present the unexpected crystal structure of 5 bound to GABA-AT, as well as computational analyses used to assist the structure elucidation process. Furthermore, 5 was found to have favorable pharmacokinetic properties and low off-target activities. In vivo studies in freely moving rats showed that 5 was dramatically superior to CPP-115 in suppressing the release of dopamine in the corpus striatum, which occurs subsequent to either an acute cocaine or nicotine challenge. Compound 5 also attenuated increased metabolic demands (neuronal glucose metabolism) in the hippocampus, a brain region that encodes spatial information concerning the environment in which an animal receives a reinforcing or aversive drug. This multidisciplinary computational design to preclinical efficacy approach should be applicable to the design and improvement of mechanism-based inhibitors of other enzymes whose crystal structures and inactivation mechanisms are known.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Prolina/análogos & derivados , 4-Aminobutirato Transaminase/química , 4-Aminobutirato Transaminase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Dopamina/metabolismo , Antagonistas de Dopamina/química , Antagonistas de Dopamina/farmacocinética , Antagonistas de Dopamina/farmacologia , Inibidores Enzimáticos/farmacocinética , Glucose/metabolismo , Humanos , Masculino , Modelos Moleculares , Prolina/química , Prolina/farmacocinética , Prolina/farmacologia , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
19.
Biochemistry ; 56(37): 4951-4961, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28816437

RESUMO

Potent mechanism-based inactivators can be rationally designed against pyridoxal 5'-phosphate (PLP)-dependent drug targets, such as ornithine aminotransferase (OAT) or γ-aminobutyric acid aminotransferase (GABA-AT). An important challenge, however, is the lack of selectivity toward other PLP-dependent, off-target enzymes, because of similarities in mechanisms of all PLP-dependent aminotransferase reactions. On the basis of complex crystal structures, we investigate the inactivation mechanism of OAT, a hepatocellular carcinoma target, by (1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP), a known inactivator of GABA-AT. A crystal structure of OAT and FCP showed the formation of a ternary adduct. This adduct can be rationalized as occurring via an enamine mechanism of inactivation, similar to that reported for GABA-AT. However, the crystal structure of an off-target, PLP-dependent enzyme, aspartate aminotransferase (Asp-AT), in complex with FCP, along with the results of attempted inhibition assays, suggests that FCP is not an inactivator of Asp-AT, but rather an alternate substrate. Turnover of FCP by Asp-AT is also supported by high-resolution mass spectrometry. Amid existing difficulties in achieving selectivity of inactivation among a large number of PLP-dependent enzymes, the obtained results provide evidence that a desirable selectivity could be achieved, taking advantage of subtle structural and mechanistic differences between a drug-target enzyme and an off-target enzyme, despite their largely similar substrate binding sites and catalytic mechanisms.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Aspartato Aminotransferases/antagonistas & inibidores , Cicloleucina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Ornitina-Oxo-Ácido Transaminase/antagonistas & inibidores , Fosfato de Piridoxal/metabolismo , 4-Aminobutirato Transaminase/química , 4-Aminobutirato Transaminase/metabolismo , Aspartato Aminotransferases/química , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cicloleucina/química , Cicloleucina/metabolismo , Cicloleucina/farmacologia , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Ligantes , Conformação Molecular , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Conformação Proteica , Fosfato de Piridoxal/química , Piridoxamina/química , Piridoxamina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
20.
Proc Natl Acad Sci U S A ; 114(15): 3891-3896, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348215

RESUMO

The Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of γ-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic γ-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoic acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fosfato de Piridoxal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Óperon , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/farmacologia , Regiões Promotoras Genéticas , Domínios Proteicos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Bases de Schiff , Transcrição Gênica , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...